

Page | 1

Python Programming

Page | 2

S.NO CONTENT PAGE NO
1 Introduction to Python 3 – 4
2 Variables in Python 5 - 8
3 Operators in Python 9 – 12
4 Data Types in Python 13 - 19
5 Functions in Python 20 -28
6 Strings in Python 29 - 46
7 Decision Statements in Python 47 - 51
8 Loop Statement in Python 52 - 57
9 Modules in Python 58 - 61
10 Object Oriented Programming 62 - 75
11 Exception Handling 76 – 82
12 File Handling 83 - 95

Page | 3

Introduction to Python

Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective approach
to object-oriented programming. Python’s elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most
platforms.

The Python interpreter is easily extended with new functions and data
types implemented in C or C++ (or other languages callable from C).
Python is also suitable as an extension language for customizable
applications.

Python is developed by Guido van Rossum. Guido van Rossum started
implementing Python in 1989. Python is a very simple programming
language so even if you are new to programming, you can learn python
without facing any issues.

Page | 4

Features of Python

Use Cases of Python

Page | 5

Variables in Python

Data Types

Data types are the classification or categorization of data items. It
represents the kind of value that tells what operations can be performed
on a particular data. Since everything is an object in Python
programming, data types are actually classes and variables are instance
(object) of these classes.

Variables

Objects are Python's abstraction for data. In Python, data are
represented by objects or by relations between objects. Use
the type() function to get the class name of an object. For example, the
following displays the class name of integer value.

Page | 6

The type of 10 is int. An object of int class contains a integer literal 10.
The same thing for string value too.

Variables in Python are names given to objects, so that it becomes
easy to refer a value. In other words, a variable points to an object. A
literal value is assigned to a variable using the = operator where the
left side should be the name of a variable, and the right side should be
a value. The following assigns a name to an integer value.

>>> type(10)
<class 'int'>

>>> type('Hello World')
<class 'string'>

>>> num=10

>>> print(num) #display value
10
>>> print(num * 2) # multiply and display result
20

>>> greet='Hello World'
>>> print(greet)
Hello World
>>> type(greet)
<class 'string'>

Page | 7

Each object in Python has an id. It is the object's address in memory
represented by an integer value. The id() function returns the id of the
specified object where it is stored, as shown below.

Naming Conventions : Any suitable identifier can be used as a name
of a variable, based on the following rules:

1. The name of the variable should start with either an alphabet letter
(lower or upper case) or an underscore (_), but it cannot start with a
digit.

2. More than one alpha-numeric characters or underscores may
follow.

3. The variable name can consist of alphabet letter(s), number(s) and
underscore(s) only. For

>>> x=5
>>> y=5
>>> x+y
10
>>> x='Hello '
>>> y='World'
>>> x+y
'Hello World'

>>> x=100
>>> id(x)
8791062077568
>>> greet='Hello'
>>> id(greet)
4521652332

Page | 8

4. example, myVar, MyVar, _myVar, MyVar123 are valid variable
names, but m*var, my-var, 1myVar are invalid variable names.

5. Variable names in Python are case sensitive.
So, NAME, name, nAME, and nAmE are treated as different
variable names.

6. Variable names cannot be a reserved keywords in Python.

Page | 9

Operators in Python

Arithmetic Operators

Logical Operators

Page | 10

Comparison Operator

Identity Operator

Page | 11

Assignment Operator

Membership Operator

Page | 12

Bitwise Operator

Page | 13

Data Types in Python

Python has five standard Data Types:

 Numbers
 String
 List
 Tuple
 Dictionary

Python sets the variable type based on the value that is assigned to it.
Unlike more riggers languages, Python will change the variable type if
the variable value is set to another value. For example:

var = 123 # This will create a number integer assignment

var = 'john' # the `var` variable is now a string type.

Numbers

Python numbers variables are created by the standard Python method:

var = 382

Most of the time using the standard Python number type is fine. Python
will automatically convert a number from one type to another if it
needs. But, under certain circumstances that a specific number type is
needed (ie. complex, hexidecimal), the format can be forced into a
format by using additional syntax in the table below:

Page | 14

Type Format Description

int a = 10 Signed Integer

long a = 345L
(L) Long integers, they can also be represented
in octal and hexadecimal

float a = 45.67 (.) Floating point real values

complex a = 3.14J (J) Contains integer in the range 0 to 255.

Most of the time Python will do variable conversion automatically. You
can also use Python conversion functions (int(), long(), float(),
complex()) to convert data from one type to another. In addition,
the type function returns information about how your data is stored
within a variable.

message = "Good morning"

num = 85

pi = 3.14159

print(type(message)) # This will return a string

print(type(n)) # This will return an integer

print(type(pi)) # This will return a float

Page | 15

String

Create string variables by enclosing characters in quotes. Python uses
single quotes ' double quotes " and triple quotes """ to denote literal

strings. Only the triple quoted strings """ also will automatically
continue across the end of line statement.

firstName = 'john'

lastName = "smith"

message = """This is a string that will span across multiple lines. Using
newline characters

and no spaces for the next lines. The end of lines within this string also
count as a newline when printed"""

Strings can be accessed as a whole string, or a substring of the complete
variable using brackets ‘[]’. Here are a couple examples:

var1 = 'Hello World!'

var2 = 'RhinoPython'

print var1[0] # this will print the first character in the string an `H`

print var2[1:5] # this will print the substring 'hinoP`

Python can use a special syntax to format multiple strings and numbers.
The string formatter is quickly covered here because it is seen often and
it is important to recognize the syntax.

print "The item {} is repeated {} times".format(element,count))

Page | 16

The {} are placeholders that are substituted by the

variables element and count in the final string. This compact syntax is
meant to keep the code more readable and compact.

Python is currently transitioning to the format syntax above, but python
can use an older syntax, which is being phased out, but is still seen in
some example code:

print "The item %i is repeated %i times"% (element,count)

List

Lists are a very useful variable type in Python. A list can contain a
series of values. List variables are declared by using brackets [

] following the variable name.

A = [] # This is a blank list variable

B = [1, 23, 45, 67] # this list creates an initial list of 4 numbers.

C = [2, 4, 'john'] # lists can contain different variable type

mylist = ['Rhino', 'Grasshopper', 'Flamingo', 'Bongo']

B = len(mylist) # This will return the length of the list which is 3. The
index is 0, 1, 2, 3.

print mylist[1] # This will return the value at index 1, which is
'Grasshopper'

print mylist[0:2] # This will return the first 3 elements in the list.

Page | 17

You can assign data to a specific element of the list using an index into
the list. The list index starts at zero. Data can be assigned to the
elements of an array as follows:

mylist = [0, 1, 2, 3]

mylist[0] = 'Rhino'

mylist[1] = 'Grasshopper'

mylist[2] = 'Flamingo'

mylist[3] = 'Bongo'

print mylist[1]

Lists aren’t limited to a single dimension. Although most people can’t
comprehend more than three or four dimensions. You can declare
multiple dimensions by separating an with commas. In the following
example, the MyTable variable is a two-dimensional array :

MyTable = [[], []]

In a two-dimensional array, the first number is always the number of
rows; the second number is the number of columns.

Tuple

Tuples are a group of values like a list and are manipulated in similar
ways. But, tuples are fixed in size once they are assigned. In Python the
fixed size is considered immutable as compared to a list that is dynamic
and mutable. Tuples are defined by parenthesis ().

myGroup = ('Rhino', 'Grasshopper', 'Flamingo', 'Bongo')

Page | 18

Here are some advantages of tuples over lists:

1. Elements to a tuple. Tuples have no append or extend method.
2. Elements cannot be removed from a tuple.
3. You can find elements in a tuple, since this doesn’t change the

tuple.
4. You can also use the in operator to check if an element exists in

the tuple.
5. Tuples are faster than lists. If you’re defining a constant set of

values and all you’re ever going to do with it is iterate through
it, use a tuple instead of a list.

6. It makes your code safer if you “write-protect” data that does
not need to be changed.

It seems tuples are very restrictive, so why are they useful? There are
many datastructures in Rhino that require a fixed set of values. For
instance a Rhino point is a list of 3 numbers [34.5, 45.7, 0] . If this is set
as tuple, then you can be assured the original 3 number structure stays
as a point (34.5, 45.7, 0) . There are other datastructures such as lines,
vectors, domains and other data in Rhino that also require a certain set
of values that do not change. Tuples are great for this.

Dictionary

Dictionaries in Python are lists of Key : Value pairs. This is a very
powerful datatype to hold a lot of related information that can be
associated through keys . The main operation of a dictionary is to

extract a value based on the key name. Unlike lists, where index

numbers are used, dictionaries allow the use of a key to access its

Page | 19

members. Dictionaries can also be used to sort, iterate and compare
data.

Dictionaries are created by using braces ({}) with pairs separated by a
comma (,) and the key values associated with a colon(:). In Dictionaries
the Key must be unique. Here is a quick example on how dictionaries
might be used:

room_num = {'john': 425, 'tom': 212}

room_num['john'] = 645 # set the value associated with the 'john' key to
645

print (room_num['tom']) # print the value of the 'tom' key.

room_num['isaac'] = 345 # Add a new key 'isaac' with the associated
value

print (room_num.keys()) # print out a list of keys in the dictionary

print ('isaac' in room_num) # test to see if 'issac' is in the dictionary.
This returns true.

Page | 20

Functions in Python

Python includes many built-in functions. These functions perform a
predefined task and can be called upon in any program, as per
requirement. However, if you don't find a suitable built-in function to
serve your purpose, you can define one. We will now see how to
define and use a function in a Python program.

Defining a Function

A function is a reusable block of programming statements designed to
perform a certain task. To define a function, Python provides
the def keyword. The following is the syntax of defining a function.

def function_name(parameters):
 """docstring"""
 statement1
 statement2
 ...
 ...
 return [expr]

The keyword def is followed by a suitable identifier as the name of the
function and parentheses. One or more parameters may be optionally
mentioned inside parentheses. The : symbol after parentheses starts an
indented block.

The first statement in the function body can be a string, which is called
the docstring. It explains the functionality of the function/class. The
docstring is not mandatory.

Page | 21

The function body contains one or more statements that perform some
actions. It can also use pass keyword.

Optionally, the last statement in the function block is the return
statement. It sends an execution control back to calling the
environment. If an expression is added in front of return, its value is
also returned to the calling code.

The following example defines the greet() function.

Example: User-defined Function

def greet():
 """This function displays 'Hello World!'"""
 print('Hello World!')

Above, we have defined the greet() function. The first statement is a
docstring that mentions what this function does. The second like is
a print method that displays the specified string to the console. Note
that it does not have the return statement.

To call a defined function, just use its name as a statement anywhere
in the code. For example, the above function can be called using
parenthesis, greet()

Example: Calling User-defined Function
greet()
Output
Hello World!

Page | 22

By default, all the functions return None if the return statement does
not exist.

Example: Calling User-defined Function

val = greet()
print(val)
Output

None

The help() function displays the docstring, as shown below.

Example: Calling User-defined Function

>>> help(greet)
Help on function greet in module __main__:

 greet()
 This function displays 'Hello World!'

Function Parameters

It is possible to define a function to receive one or more parameters
(also called arguments) and use them for processing inside the
function block. Parameters/arguments may be given suitable formal
names. The greet() function is now defined to receive a string
parameter called name. Inside the function, the print() statement is
modified to display the greeting message addressed to the received
parameter.

Example: Parameterized Function

Page | 23

def greet(name):
 print ('Hello ', name)

greet('Steve') # calling function with argument
greet(123)
Output

Hello Steve
Hello 123

The names of the arguments used in the definition of the function are
called formal arguments/parameters. Objects actually used while
calling the function are called actual arguments/parameters.

The function parameters can have an annotation to specify the type of
the parameter using parameter:type syntax. For example, the following
annotates the parameter type string.

Example: Parameterized Function

def greet(name:str):
 print ('Hello ', name)

greet('Steve') # calling function with string argument
greet(123) # raise an error for int argument

Multiple Parameters

A function can have multiple parameters. The following function takes
three arguments.

Example: Parameterized Function

Page | 24

def greet(name1, name2, name3):
 print ('Hello ', name1, ' , ', name2 , ', and ', name3)

greet('Steve', 'Bill', 'Yash') # calling function with string argument
Output

Hello Steve, Bill, and Yash

Unknown Number of Arguments

A function in Python can have an unknown number of arguments by
putting * before the parameter if you don't know the number of
arguments the user is going to pass.

Example: Parameterized Function

def greet(*names):
 print ('Hello ', names[0], ', ', names[1], ', ', names[3])

greet('Steve', 'Bill', 'Yash')
Output

Hello Steve, Bill, and Yash

The following function works with any number of arguments.

Example: Parameterized Function

def greet(*names):
 i=0
 print('Hello ', end='')
 while len(names) > i:
 print(names[i], end=', ')

Page | 25

i+=1
greet('Steve', 'Bill', 'Yash')
greet('Steve', 'Bill', 'Yash', 'Kapil', 'John', 'Amir')
Output

Hello Steve, Bill, Yash,
Hello Steve, Bill, Yash, Kapil, John, Amir

Function with Keyword Arguments

In order to call a function with arguments, the same number of actual
arguments must be provided. However, a function can be called by
passing parameter values using the parameter names in any order. For
example, the following passes values using the parameter names.

def greet(firstname, lastname):
 print ('Hello', firstname, lastname)

greet(lastname='Jobs', firstname='Steve') # passing parameters in any
order using keyword argument
Output

Hello Steve Jobs

Keyword Argument **kwarg

The function can have a single parameter prefixed with **. This type
of parameter initialized to a new ordered mapping receiving any
excess keyword arguments, defaulting to a new empty mapping of the
same type.

Example: Parameterized Function

Page | 26

def greet(**person):

print('Hello ', person['firstname'], person['lastname'])

greet(firstname='Steve', lastname='Jobs')
greet(lastname='Jobs', firstname='Steve')
greet(firstname='Bill', lastname='Gates', age=55)
greet(firstname='Bill') # raises KeyError
Output

Hello Steve Jobs
Hello Steve Jobs
Hello Bill Gates

When using the ** parameter, the order of arguments does not matter.
However, the name of the arguments must be the same. Access the
value of keyword arguments
using paramter_name['keyword_argument'].

If the function access the keyword argument but the calling code does
not pass that keyword argument, then it will raise
the KeyError exception, as shown below.

Example: Parameterized Function
 Copy
def greet(**person):
 print('Hello ', person['firstname'], person['lastname'])

greet(firstname='Bill') # raises KeyError, must provide 'lastname'
arguement
Output

Page | 27

Traceback (most recent call last):
 File "<pyshell#21>", line 1, in <module>
 greet(firstname='Bill')
 File "<pyshell#19>", line 2, in greet
 print('Hello ', person['firstname'], person['lastname'])
KeyError: 'lastname'

Parameter with Default Value

While defining a function, its parameters may be assigned default
values. This default value gets substituted if an appropriate actual
argument is passed when the function is called. However, if the actual
argument is not provided, the default value will be used inside the
function.

The following greet() function is defined with the name parameter
having the default value 'Guest'. It will be replaced only if some actual
argument is passed.

Example: Parameter with Default Value

def greet(name = 'Guest'):
 print ('Hello', name)

greet()
greet('Steve')
Output

Hello Guest
Hello Steve

Page | 28

Function with Return Value

Most of the time, we need the result of the function to be used in
further processes. Hence, when a function returns, it should also return
a value.

A user-defined function can also be made to return a value to the
calling environment by putting an expression in front of the return
statement. In this case, the returned value has to be assigned to some
variable.

Example: Return Value

def sum(a, b):
 return a + b

The above function can be called and provided the value, as shown
below.

Example: Parameter with Default Value

total=sum(10, 20)
print(total)
total=sum(5, sum(10, 20))
print(total)
Output

30
35

Page | 29

Strings in Python

A string is a built-in sequence data type. A string object is an ordered
collection of Unicode characters put between single, double or triple
quotes.

'Hello Python'

Out[1]:

'Hello Python'

In [2]:

#using double quotes

"Hello Python"

Out[2]:

'Hello Python'

In [3]:

#using triple quotes

'''

Hello World

Welcome to Python

'''

Out[3]:

'\nHello World\nWelcome to Python\n'

Page | 30

Note that even though double or triple quotes are used, Python uses
single quotes for internal representation. Triple quotes are helpful in
forming a string of more than one lines. Triple quotes may be of triple
single quotes ('''…''') or triple double quotes ("""…"""). For each
physical line the string includes a newline character \n. When the string
object is displayed using print() statement, the effect newline characters
is visible.

The newline character \n is one of the escape sequences identified by
Python. Escape sequence invokes an alternative implementation
character subsequence to \. In Python \ is used as escape character.
Following table shows list of escape sequences.

In [4]:

#using triple quotes

aString='''

Hello World

Welcome to Python

'''

print (aString)

Out[4]:

Hello World

Welcome to Python

Page | 31

Escape
sequence

Description Example Result

\a Bell or alert "\a" Bell sound

\b Backspace "ab\bc" ac

\f Formfeed "hello\fworld" hello world

\n Newline "hello\nworld" hello world

\nnn
Octal notation, where n is
in the range 0-7

'\101' A

\t Tab 'Hello\tPython' HelloPython

\xnn
Hexadecimal notation,
where n is in the range 0-9,
a-f, or A-F

'\x41' A

Page | 32

String is also built using Python’s built-in str() function.

In [5]:

str(10)

Out[5]:

'10'

All strings are objects of built-in str class. The str class has a number of
methods to perform various operations on string. Let us discuss string
methods and their uses.

Following group of string methods deal with rearrangement of casing of
alphabets in a string.

capitalize() Changes first letter of string to capital

lower() All uppercase letters in string are converted to
lowercase.

swapcase() Changes the case of letter from upper to lower
and vice versa.

title() First letter of all words changes to uppercase and
the rest are lowercase.

Page | 33

upper()

 All lowercase letters in string changed to
uppercase.

In [6]:

word='hello'

word.capitalize()

Out[6]:

'Hello'

In [7]:

line='HELLO WORLD'

line.lower()

Out[7]:

'hello world'

In [8]:

line='Hello World'

line.swapcase()

Out[8]:

'hELLO wORLD'

In [9]:

line='python is beautiful'

Page | 34

Following group of methods are Boolean in nature. They return either
True or False.

endswith() Determines if string ends with given substring.

startswith() Determines if string starts with given substring.

isalnum() Returns true if all characters are alphanumeric and false
otherwise.

isalpha() Returns true if all characters are alphabetic and false
otherwise.

isdigit() Returns true if string contains only digits.

islower() Returns true if string has all cased characters in
lowercase and false otherwise.

In [10]:

line='hello world'

line.upper()

Out[10]:

'HELLO WORLD'

Page | 35

istitle() Returns true if each word in string starts with uppercase
character and others in lowercase.

isupper() Returns true if all characters in string are in uppercase
and false otherwise.

In [11]:

line="How are you?"

line.endswith("?")

Out[11]:

True

In [12]:

line.startswith("How")

Out[12]:

True

In [13]:

string="AMD64"

string.isalnum()

Out[13]:

True

Page | 36

In [14]:

string.isalpha()

Out[14]:

False

In [15]:

string="102.556" # . is not a digit

string.isdigit()

Out[15]:

False

In [16]:

line="How are you"

line.islower()

Out[16]:

False

In [17]:

line.istitle()

Out[17]:

False

In [18]:

line.isupper()

Page | 37

find() Determine if a substring occurs in given string. Returns
index if found and -1 otherwise

index() Same as find(), but raises an exception if substring not
found.

rfind() Same as find(), but search string in reverse direction.

rindex() Same as index(), but search string in reverse direction.

replace() Replaces all occurrences of a given substring and replace
with another.

In [19]:

string="Simple is Better Than Complex"

string.find("an")

Out[19]:

19

In [20]:

string.find("be")

Out[20]:

Page | 38

-1

In [21]:

string.index("is")

Out[21]:

7

In [22]:

string.index('Is')

ValueError Traceback (most recent call last)

<ipython-input-22-2f723114bb0b> in <module>()

----> 1 string.index('Is')

ValueError: substring not found

In [23]:

string="Simple is Better Than Complex"

string.replace("is","was")

Out[23]:

'Simple was Better Than Complex'

Page | 39

center() Returns a string padded with given character so that
original string is centered to a specified width.

expandtabs() replaces tab escape sequence in string with multiple
spaces. default tab size is 8.

ljust() string is padded with spaces on left and left-justified
to a specified width.

lstrip() Removes leading whitespaces in string.

rjust() string is padded with spaces on right and right-
justified to a specified width.

rstrip() Removes trailing whitespaces of string.

split() Splits given string according to delimiter character
or substring (default is space) and returns list of
substrings.

strip() Performs both lstrip() and rstrip() on string.

Page | 40

In [24]:

string="Computer"

string.center(30, "*")

Out[24]:

'***********Computer***********'

In [25]:

string.ljust(30,"*")

Out[25]:

'Computer**********************'

In [26]:

string.rjust(30,"*")

Out[26]:

'**********************Computer'

In [27]:

string = "Hello\tWorld"

string.expandtabs()

Out[27]:

'Hello World'

In [28]:

string=' computer '

Page | 41

String formatting

Python uses C style format specification symbols (%d, %f, %s etc) to
construct a string by substituting these symbols by Python objects.

In the example below, the symbols %s and %d in the string are
substituted by values of objects in tuple outside the string, prefixed by
% symbol

string.lstrip()

Out[28]:

'computer '

In [29]:

string.rstrip()

Out[29]:

' computer'

In [30]:

string='192.168.001.001'

string.split('.')

Out[30]:

['192', '168', '001', '001']

Page | 42

Symbol Purpose

%c character

%s string

%i signed decimal integer

%d signed decimal integer

In [31]:

name="Kiran"

marks=95

"Hi my name is %s and I have secured %d percent marks in my B.E
exam" %(name, marks)

Out[31]:

'Hi my name is Kiran and I have secured 95 percent marks in my B.E
exam'

Page | 43

%u unsigned decimal integer

%o octal integer

%x / %X hexadecimal integer

%e / %E exponential notation

%f floating point real number

In numeric formatting symbols, width before and/or after decimal point
can be specified.

In [32]:

x=10

y=1001.21

"x=%5d y=%10.3f" %(x,y)

Out[32]:

'x= 10 y= 1001.210'

Page | 44

By default string is aligned to left. To make it right aligned prefix –
symbol to width in %s symbol.

Python 3.x has a format() method which is more efficient and elegant as
far as formatting with variable substitution is concerned.

Instead of C like % formatting operator, {} symbols are used as place
holders.

In [33]:

string='computer'

"%30s"%(string,)

Out[33]:

' computer'

In [34]:

"%-30s"%(string,)

Out[34]:

'computer

In [35]:

name="Kiran"

marks=95

"Hi my name is {} and I have secured {} percent marks in my B.E
exam".format(name, marks)

Page | 45

Format specification characters are used with : instead of %. It means to
insert a string in place holder use {:s} and for integer use {:d}. Width of
numeric and string variables is specified as before.

Alignment of strings is formatted by <, > and ^ symbols in place holder.
They make the substituted string left aligned, right aligned or center
aligned respectively. Default is < for left alignment.

exam".format(name, marks)

Out[35]:

'Hi my name is Kiran and I have secured 95 percent marks in my B.E
exam'

In [36]:

x=10

y=1001.21

"x={:5d} y={:10.3f}".format(x,y)

Out[36]:

'x= 10 y= 1001.210'

string='computer'

"{:<30s}".format(string,)

Out[37]:

Page | 46

'computer '

In [38]:

"{:30s}".format(string,) #default is < - left alignment

Out[38]:

'computer '

In [39]:

"{:^30s}".format(string,)

Out[39]:

' computer '

Page | 47

Decision Statements in Python

In Python, the selection statements are also known as decision making
statements or branching statements. The selection statements are used to
select a part of the program to be executed based on a condition. Python
provides the following selection statements.

 if statement
 if-else statement
 if-elif statement

if statement in Python

In Python, we use the if statement to test a condition and decide the
execution of a block of statements based on that condition result. The if
statement checks, the given condition then decides the execution of a
block of statements. If it is True, then the block of statements is
executed and if it is False, then the block of statements is ignored. The
execution flow of if statement is as follows.

Page | 48

The general syntax of if statement in Python is as follows.

if condition:

 Statement_1

 Statement_2

 Statement_3

 ...

When we define an if statement, the block of statements must be
specified using indentation only. The indentation is a series of white-
spaces. Here, the number of white-spaces is variable, but all statements
must use the identical number of white-spaces. Let's look at the
following example Python code.

if-else statement in Python

In Python, we use the if-else statement to test a condition and pick the
execution of a block of statements out of two blocks based on that
condition result. The if-else statement checks the given condition then
decides which block of statements to be executed based on the condition
result. If the condition is True, then the true block of statements is

num = int(input('Enter any number: '))

if (num % 5 == 0):

 print(f'Given number {num} is divisible by 5')

 print('This statement belongs to if statement')

print('This statement does not belongs to if statement')

Page | 49

executed and if it is False, then the false block of statements is executed.
The execution flow of if-else statement is as follows.

The general syntax of if-else statement in Python is as follows.

if condition:

 Statement_1

 Statement_2

 Statement_3

 ...

else:

 Statement_4

 Statement_5

 ...

Page | 50

In the above syntax, whenever the condition is True, the statements 1 2
and 3 are gets executed. And if the condition is False then the
statements 4 and 5 are gets executed. Let's look at the following
example of Python code.

elif statement in Python

In Python, When we want to test multiple conditions we
use elif statement.

The general syntax of if-elif-else statement in Python is as follows.

if condition_1:

 Statement_1

 Statement_2

 Statement_3

 ...

elif condition_2:

 Statement_4

 Statement_5

Python code for testing whether a given number is Even or Odd

num = int(input('Enter any number : '))

if num % 2 == 0:

 print(f'The number {num} is a Even number')

else:

 print(f'The number {num} is a Odd number')

Page | 51

Statement_6

 ...

else:

 Statement_7

 Statement_8

 ...

In the above syntax, whenever the condition_1 is True, the statements 1
2 and 3 are gets executed. If the condition_1 is False and condition_2 is
True then the statements 4, 5, and 6 are gets executed. And if
condition_1 nad Condition_2 both are False then the statements 7 and 8
are executed. Let's look at the following example of Python code.

Python code to illustrate elif statement

choice = input(f'Which game do you like, Press\nC - Cricket\nH -
Hokey: ')

if choice == 'C':

 print('You are a Cricketer!')

elif choice == 'H':

 print('You are a Hockey player!')

else:

 print('You are not interested in Sports')

Page | 52

Loop Statement in Python

In Python, the iterative statements are also known as looping statements
or repetitive statements. The iterative statements are used to execute a
part of the program repeatedly as long as a given condition is True.
Python provides the following iterative statements.

 while statement
 for statement

while statement

In Python, the while statement is used to execute a set of statements
repeatedly. In Python, the while statement is also known as entry
control loop statement because in the case of the while statement, first,
the given condition is verified then the execution of statements is
determined based on the condition result.

Page | 53

The general syntax of while statement in Python is as follows.

while condition:

 Statement_1

 Statement_2

 Statement_3

 ...

When we use a while statement, the value of the variable used in the
condition must be modified otherwise while loop gets into the infinite
loop.

while statement with 'else' clause in Python

In Python, the else clause can be used with a while statement. The else
block is gets executed whenever the condition of the while statement is
evaluated to false. But, if the while loop is terminated
with break statement then else doesn't execute.

count = int(input('How many times you want to say "Hello": '))

i = 1

while i <= count:

 print('Hello')

 i += 1

print('Job is done! Thank you!!')

Page | 54

for statement in Python

In Python, the for statement is used to iterate through a sequence like a
list, a tuple, a set, a dictionary, or a string. The for statement is used to
repeat the execution of a set of statements for every element of a
sequence.

The general syntax of for statement in Python is as follows.

Here, else block is gets executed because break statement does not
executed

count = int(input('How many times you want to say "Hello": '))

i = 1

while i <= count:

 if count > 10:

 print('I cann\'t say more than 10 times!')

 break

 print('Hello')

 i += 1

else:

 print('This is else block of while!!!')

print('Job is done! Thank you!!')

Page | 55

for <variable> in <sequence>:

 Statement_1

 Statement_2

 Statement_3

In the above syntax, the variable is stored with each element from
the sequence for every iteration.

Python code to illustrate for statement with List

my_list = [1, 2, 3, 4, 5]

for value in my_list:

 print(value)

print('Job is done!')

Python code to illustrate for statement with Tuple

my_tuple = (1, 2, 3, 4, 5)

for value in my_tuple:

 print(value)

print('Job is done!')

Python code to illustrate for statement with Set

my_set = {1, 2, 3, 4, 5}

for value in my_set:

 print(value)

print('Job is done!')

Page | 56

for statement with 'else' clause in Python

In Python, the else clause can be used with a for a statement. The else
block is gets executed whenever the for statement is does not terminated
with a break statement. But, if the for loop is terminated
with break statement then else block doesn't execute.

Python code to illustrate for statement with Dictionary

my_dictionary = {1:'Rama', 2:'Seetha', 3:'Heyaansh', 4:'Gouthami',
5:'Raja'}

for key, value in my_dictionary.items():

 print(f'{key} --> {value}')

print('Job is done!')

Python code to illustrate for statement with String

for item in 'Python':

 print(item)

print('Job is done!')

Python code to illustrate for statement with Range function

for value in range(1, 6):

 print(value)

print('Job is done!')

Page | 57

Here, else block is gets executed because break statement does not
executed

for item in 'Python':

 if item == 'x':

 break

 print(item)

else:

 print('else block says for is successfully completed!')

print('Job is done!!')

Here, else block does not gets executed because break statement
terminates the loop.

for item in 'Python':

 if item == 'y':

 break

 print(item)

else:

 print('else block says for is successfully completed!')

print('Job is done!!')

Page | 58

Modules in Python

Any text file with the .py extension containing Python code is
basically a module. Different Python objects such as functions,
classes, variables, constants, etc., defined in one module can be made
available to an interpreter session or another Python script by using
the import statement. Functions defined in built-in modules need to be
imported before use. On similar lines, a custom module may have one
or more user-defined Python objects in it. These objects can be
imported in the interpreter session or another script.

If the programming algorithm requires defining a lot of functions and
classes, they are logically organized in modules. One module stores
classes, functions and other resources of similar relevance. Such a
modular structure of the code makes it easy to understand, use and
maintain.

Creating a Module

Shown below is a Python script containing the definition
of sum() function. It is saved as calc.py.

calc.py

def sum(x, y):
 return x + y
Importing a Module

We can now import this module and execute the sum() function in
the Python shell.

Example: Importing a Module

Page | 59

>>> import calc
>>> calc.sum(5, 5)
10

In the same way, to use the above calc module in another Python
script, use the import statement.

Every module, either built-in or custom made, is an object of a module
class. Verify the type of different modules using the built-
in type() function, as shown below.

Example: Module Type

>>> import math
>>> type(math)
<class 'module'>
>>> import calc
>>> type(calc)
<class 'module'>
Renaming the Imported Module

Use the as keyword to rename the imported module as shown below.

Example:

>>> import math as cal
>>> cal.log(4)
1.3862943611198906

Page | 60

from .. import statement

The above import statement will load all the resources of the module
in the current working environment (also called namespace). It is
possible to import specific objects from a module by using this syntax.
For example, the following module calc.py has three functions in it.

calc.py
def sum(x,y):
 return x + y
def average(x, y):
 return (x + y)/2
def power(x, y):
 return x**y

Now, we can import one or more functions using the from...import
statement. For example, the following code imports only two functions
in the test.py.

Example: Importing Module's Functions
>>> from functions import sum, average
>>> sum(10, 20)
30
>>> average(10, 20)
15
>>> power(2, 4)

The following example imports only one function - sum.

Example: Importing Module's Function

Page | 61

>>> from functions import sum
>>> sum(10, 20)
30
>>> average(10, 20)

You can also import all of its functions using the from...import
* syntax.

Example: Import Everythin from Module
 Copy
>>> from functions import *
>>> sum(10, 20)
30
>>> average(10, 20)
15
>>> power(2, 2)
4

Page | 62

Object Oriented Programming

OOPs concepts in Python:

 Python Classes and Objects
 Inheritance
 Overloading
 Overriding
 Data hiding

Classes and Objects
 Python is an object-oriented programming language where

programming stresses more on objects.
 Almost everything in Python is objects.

Classes
Class in Python is a collection of objects, we can think of a class as a
blueprint or sketch or prototype. It contains all the details of an object.

In the real-world example, Animal is a class, because we have different
kinds of Animals in the world and all of these are belongs to a class
called Animal.

Defining a class
In Python, we should define a class using the keyword ‘class’.

Syntax:
class classname:

#Collection of statements or functions or classes

Page | 63

In the above example, we have declared the class called ‘Myclass’ and
we have declared and defined some variables and functions
respectively.

To access those functions or variables present inside the class, we can
use the class name by creating an object of it.

First, let’s see how to access those using class name.

Example:

Objects
An object is usually an instance of a class. It is used to access
everything present inside the class.

Example:
class MyClass:
a = 10
b = 20
def add():
sum = a+b
print(sum)

class MyClass:
 a = 10
 b = 20
 #Accessing variable present inside MyClass
print(MyClass.a)
Output
10

Page | 64

Creating an Object
Syntax:
variablename = classname

Constructor in Python
Constructor in Python is a special method which is used to initialize the
members of a class during run-time when an object is created.

In Python, we have some special built-in class methods which start with
a double underscore (__) and they have a special meaning in Python.

Example:
class MyClass:
 a = 10
 b = 20
 def add(self):
 sum = self.a + self.b
 print(sum)

#Creating an object of class MyClass
ob = MyClass()

#Accessing function and variables present inside MyClass using the object
print(ob.a)
print(ob.b)
ob.add()
Output:
10
20
30

Page | 65

The name of the constructor will always be __init__().

Every class must have a constructor, even if you don’t create a
constructor explicitly it will create a default constructor by itself.

If we observe in the above example, we are not calling the __init__()
method, because it will be called automatically when we create an
object to that class and initialize the data members if any.

Always remember that a constructor will never return any values, hence
it does not contain any return statements.

Example:
class MyClass:
 sum = 0

def __init__ (self, a, b):
 self.sum = a+b

def printSum(self):
 print(“Sum of a and b is: ”, self.sum)

#Creating an object of class MyClass
ob = MyClass(12, 15)
ob.printSum()
Output:
Sum of a and b is: 27

Page | 66

Inheritance
Inheritance is one of the most powerful concepts of OOPs.A class which
inherits the properties of another class is called Inheritance.

The class which inherits the properties is called child class/subclass and
the class from which properties are inherited is called parent class/base
class.

Python provides three types of Inheritance:
 Single Inheritance
 Multilevel Inheritance
 Multiple Inheritance

Single Inheritance
In Single inheritance, one class will inherit the properties of one class
only.

Example:
class Operations:
 a = 10
 b = 20
 def add(self):
 sum = self.a + self.b
 print(“Sum of a and b is: “, sum)

class MyClass(Operations):
 c = 50
 d = 10
 def sub(self):
 sub = self.c – self.d
 print(“Subtraction of c and d is: ”, sub)

Page | 67

In the above example, we are inheriting the properties of the
‘Operations’ class into the class ‘MyClass’.

Hence, we can access all the methods or statements present in the
‘Operations’ class by using the MyClass objects.

Multilevel Inheritance

In multilevel Inheritance, one or more class act as a base class.

Which means the second class will inherit the properties of the first
class and the third class will inherit the properties of the second class.
So the second class will act as both the Parent class as well as Child
class.

ob = MyClass()
ob.add()
ob.sub()
Output:
Sum of a and b is: 30
Subtraction of c and d is: 40

class Addition:
 a = 10
 b = 20
 def add(self):
 sum = self.a + self.b
 print(“Sum of a and b is: ”, sum)

Page | 68

In the above example, class ‘Subtraction’ inherits the properties of class
‘Addition’ and class ‘Multiplication’ will inherit the properties of class
‘Subtraction’. So class ‘Subtraction’ will act as both Base class and
derived class.

Multiple Inheritance

The class which inherits the properties of multiple classes is called
Multiple Inheritance.

class Subtraction(Addition):
 def sub(self):
 sub = self.b-self.a
 print(“Subtraction of a and b is: ”, sub)

class Multiplication(Subtraction):
 def mul(self):
 multi = self.a * self.b
 print(“Multiplication of a and b is: ”, multi)

ob = Multiplication ()
ob.add()
ob.sub()
ob.mul()
Output:
Sum of a and b is: 30
Subtraction of a and b is: 10
Multiplication of a and b is: 200

Page | 69

Example:
class Addition:
 a = 10
 b = 20
 def add(self):
 sum = self. a+ self.b
 print(“Sum of a and b is: “, sum)

class Subtraction():
 c = 50
 d = 10
 def sub(self):
 sub = self.c-self.d
 print(“Subtraction of c and d is: ”, sub)

class Multiplication(Addition,Subtraction):
 def mul(self):
 multi = self.a * self.c
 print(“Multiplication of a and c is: ”, multi)

ob = Multiplication ()
ob.add()
ob.sub()
ob.mul()
Output:
Sum of a and b is: 30
Subtraction of c and d is: 10
Multiplication of a and c is: 500

Page | 70

Method Overloading in Python
Multiple methods with the same name but with a different type of
parameter or a different number of parameters is called Method
overloading

Method overloading is not supported in Python, because if we see in the
above example we have defined two functions with the same name
‘product’ but with a different number of parameters.

Example:
def product(a, b):

 p = a*b

 print(p)

def product(a, b, c):

 p = a*b*c

 print(p)

#Gives you an error saying one more argument is missing as it updated to the
second function

#product(2, 3)

product(2, 3, 5)

Output:
30

Page | 71

But in Python, the latest defined will get updated, hence the function
product(a,b) will become useless.

Method Overriding in Python
If a subclass method has the same name which is declared in the
superclass method then it is called Method overriding

To achieve method overriding we must use inheritance.

Example:
 class A:

 def sayHi():

 print(“I am in A”)

class B(A):

 def sayHi():

 print(“I am in B”)

ob = B()

ob.sayHi()

Output:
I am in B

Page | 72

Data Hiding in Python
Data hiding means making the data private so that it will not be
accessible to the other class members. It can be accessed only in the
class where it is declared.

In python, if we want to hide the variable, then we need to write double
underscore (__) before the variable name.

Example:
 Class MyClass:
 __num = 10
 def add(self, a):
 sum = self.__num + a
 print(sum)
ob = MyClass()
ob.add(20)
print(ob.__num)

#The above statement gives an error because we are trying to access
private variable outside the class

Output:
30
Traceback (most recent call last):
File “DataHiding.py”, line 10, in
print (ob.__num)
AttributeError: MyClass instance has
no attribute ‘__num

Page | 73

Methods in Python

Function

A function is a block of code to carry out a specific task, will contain its
own scope and is called by name. All functions may contain zero(no)
arguments or more than one arguments. On exit, a function can or can
not return one or more values.

Basic function syntax

def functionName(arg1, arg2,….):
 …….
 # Function_body
 ……..

Let’s create our own (user), a very simple function called sum(user can
give any name he wants)”. Function “sum” is having two arguments
called num1 and num2 and will return the sum of the arguments passed
to the function(sum). When we call the function (sum) with
values(arguments) 5 and 6, it returns 11.

def sum(num1, num2):
 return (num1 + num2)

Output

>>> sum(5,6)
11

So from above, we see the ‘return’ statement returns a value from
python function.

The function allows us to implement code reusability. There are three
kinds of functions −

Page | 74

 Built-in functions (As the name suggests, these functions come
with the Python language, for example, help() to ask for any help,
max()- to get maximum value, type()- to return the type of an
object and many more.)

 User-defined functions (These are the functions that users create to
help them, like the “sum” function we have created above).

 Anonymous Functions (also called lambda functions and unlike
normal function which is defined using def keyword are defined
using lambda keyword).

Method

A method in python is somewhat similar to a function, except it is
associated with object/classes. Methods in python are very similar to
functions except for two major differences.

 The method is implicitly used for an object for which it is called.

 The method is accessible to data that is contained within the class.

General Method Syntax

class ClassName:
 def method_name():
 …………..
 # Method_body
 ………………

Let’s understand the method through one simple code −

Page | 75

class Pet(object):

 def my_method(self):

 print("I am a Cat")

cat = Pet()

cat.my_method()

Output

I am a Cat

In the above code, we first defined class “Pet”. Then we created the
object “cat” from this blueprint. Next, we call our custom method called
my_method with the object(.i.e. cat).

Key differences between method and function in python

As we get the basic understanding of the function and method both, let's
highlight the key differences between them −

 Unlike a function, methods are called on an object. Like in our
example above we call our method .i.e. “my_method” on the object
“cat” whereas the function “sum” is called without any object.
Also, because the method is called on an object, it can access that
data within it.

 Unlike method which can alter the object’s state, python function
doesn’t do this and normally operates on i

Page | 76

Exception Handling in Python

The cause of an exception is often external to the program itself. For
example, an incorrect input, a malfunctioning IO device etc. Because
the program abruptly terminates on encountering an exception, it may
cause damage to system resources, such as files. Hence, the exceptions
should be properly handled so that an abrupt termination of the
program is prevented.

Python uses try and except keywords to handle exceptions. Both
keywords are followed by indented blocks.

Syntax:
try :
 #statements in try block
except :
 #executed when error in try block

The try: block contains one or more statements which are likely to
encounter an exception. If the statements in this block are executed
without an exception, the subsequent except: block is skipped.

If the exception does occur, the program flow is transferred to the
except: block. The statements in the except: block are meant to handle
the cause of the exception appropriately. For example, returning an
appropriate error message.

You can specify the type of exception after the except keyword. The
subsequent block will be executed only if the specified exception
occurs. There may be multiple except clauses with different exception
types in a single try block. If the type of exception doesn't match any

Page | 77

of the except blocks, it will remain unhandled and the program will
terminate.

The rest of the statements after the except block will continue to be
executed, regardless if the exception is encountered or not.

The following example will throw an exception when we try to divide
an integer by a string.

You can mention a specific type of exception in front of the except
keyword. The subsequent block will be executed only if the specified
exception occurs. There may be multiple except clauses with different
exception types in a single try block. If the type of exception doesn't
match any of the except blocks, it will remain unhandled and the
program will terminate.

Example: try...except blocks
try:
 a=5
 b='0'
 print(a/b)
except:
 print('Some error occurred.')
print("Out of try except blocks.")
Output
Some error occurred.
Out of try except blocks.

Page | 78

As mentioned above, a single try block may have multiple except
blocks. The following example uses two except blocks to process two
different exception types:

Example: Catch Specific Error Type
try:
 a=5
 b='0'
 print (a+b)
except TypeError:
 print('Unsupported operation')
print ("Out of try except blocks")
Output
Unsupported operation
Out of try except blocks

Example: Multiple except Blocks
try:
 a=5
 b=0
 print (a/b)
except TypeError:
 print('Unsupported operation')
except ZeroDivisionError:
 print ('Division by zero not allowed')
print ('Out of try except blocks')
Output
Division by zero not allowed
Out of try except blocks

Page | 79

else and finally

In Python, keywords else and finally can also be used along with the
try and except clauses. While the except block is executed if the
exception occurs inside the try block, the else block gets processed if
the try block is found to be exception free.

Syntax:

try:
 #statements in try block
except:
 #executed when error in try block
else:
 #executed if try block is error-free
finally:
 #executed irrespective of exception occured or not

The finally block consists of statements which should be processed
regardless of an exception occurring in the try block or not. As a
consequence, the error-free try block skips the except clause and enters
the finally block before going on to execute the rest of the code. If,
however, there's an exception in the try block, the appropriate except
block will be processed, and the statements in the finally block will be
processed before proceeding to the rest of the code.

The example below accepts two numbers from the user and performs
their division. It demonstrates the uses of else and finally blocks.

Page | 80

Example: try, except, else, finally blocks
try:
 print('try block')
 x=int(input('Enter a number: '))
 y=int(input('Enter another number: '))
 z=x/y
except ZeroDivisionError:
 print("except ZeroDivisionError block")
 print("Division by 0 not accepted")
else:
 print("else block")
 print("Division = ", z)
finally:
 print("finally block")
 x=0
 y=0
print ("Out of try, except, else and finally blocks.")

The first run is a normal case. The out of the else and finally blocks
is displayed because the try block is error-free.

Output
try block
Enter a number: 10
Enter another number: 2
else block
Division = 5.0
finally block
Out of try, except, else and finally blocks.

Page | 81

The second run is a case of division by zero, hence, the except block
and the finally block are executed, but the else block is not
executed.

Output
try block
Enter a number: 10
Enter another number: 0
except ZeroDivisionError block
Division by 0 not accepted
finally block
Out of try, except, else and finally blocks.

In the third run case, an uncaught exception occurs. The finally
block is still executed but the program terminates and does not
execute the program after the finally block.

Output
try block
Enter a number: 10
Enter another number: xyz
finally block
Traceback (most recent call last):
 File "C:\python36\codes\test.py", line 3, in <module>
 y=int(input('Enter another number: '))
ValueError: invalid literal for int() with base 10: 'xyz'

Page | 82

Raise an Exception

Python also provides the raise keyword to be used in the context of
exception handling. It causes an exception to be generated explicitly.
Built-in errors are raised implicitly. However, a built-in or custom
exception can be forced during execution.

The following code accepts a number from the user. The try block
raises a Value Error exception if the number is outside the allowed
range.

Example: Raise an Exception
try:
 x=int(input('Enter a number upto 100: '))
 if x > 100:
 raise ValueError(x)
except ValueError:
 print(x, "is out of allowed range")
else:
 print(x, "is within the allowed range")

Output
Enter a number upto 100: 200
200 is out of allowed range
Enter a number upto 100: 50
50 is within the allowed range

Page | 83

File Handling in Python

File handling is basically the management of the files on a file system.
Every operating system has its own way to store files.

Python File handling is useful to work with files in our programs. We
don’t have to worry about the underlying operating system and its file
system rules and operations.

Opening and Closing Files

Until now, you have been reading and writing to the standard input and
output. Now, we will see how to use actual data files.

Python provides basic functions and methods necessary to manipulate
files by default. You can do most of the file manipulation using
a file object.

The open Function

Before you can read or write a file, you have to open it using Python's
built-in open() function. This function creates a file object, which
would be utilized to call other support methods associated with it.

Syntax
file object = open(file_name [, access_mode][, buffering])

Here are parameter details −

 file_name − The file_name argument is a string value that
contains the name of the file that you want to access.

 access_mode − The access_mode determines the mode in which
the file has to be opened, i.e., read, write, append, etc. A complete
list of possible values is given below in the table. This is optional
parameter and the default file access mode is read (r).

Page | 84

 buffering − If the buffering value is set to 0, no buffering takes
place. If the buffering value is 1, line buffering is performed while
accessing a file. If you specify the buffering value as an integer
greater than 1, then buffering action is performed with the
indicated buffer size. If negative, the buffer size is the system
default(default behavior).

Sr.No. Modes & Description

1 r

Opens a file for reading only. The file pointer is placed at the
beginning of the file. This is the default mode.

2 rb

Opens a file for reading only in binary format. The file pointer
is placed at the beginning of the file. This is the default mode.

3 r+

Opens a file for both reading and writing. The file pointer
placed at the beginning of the file.

4 rb+

Opens a file for both reading and writing in binary format. The
file pointer placed at the beginning of the file.

Page | 85

5 w

Opens a file for writing only. Overwrites the file if the file
exists. If the file does not exist, creates a new file for writing.

6 wb

Opens a file for writing only in binary format. Overwrites the
file if the file exists. If the file does not exist, creates a new file
for writing.

7 w+

Opens a file for both writing and reading. Overwrites the
existing file if the file exists. If the file does not exist, creates a
new file for reading and writing.

8 wb+

Opens a file for both writing and reading in binary format.
Overwrites the existing file if the file exists. If the file does not
exist, creates a new file for reading and writing.

9 a

Opens a file for appending. The file pointer is at the end of the
file if the file exists. That is, the file is in the append mode. If
the file does not exist, it creates a new file for writing.

10 ab

Opens a file for appending in binary format. The file pointer is

Page | 86

at the end of the file if the file exists. That is, the file is in the
append mode. If the file does not exist, it creates a new file for
writing.

11 a+

Opens a file for both appending and reading. The file pointer is
at the end of the file if the file exists. The file opens in the
append mode. If the file does not exist, it creates a new file for
reading and writing.

12 ab+

Opens a file for both appending and reading in binary format.
The file pointer is at the end of the file if the file exists. The file
opens in the append mode. If the file does not exist, it creates a
new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various
information related to that file.

Here is a list of all attributes related to file object −

Sr.No. Attribute & Description

1 file.closed

Returns true if file is closed, false otherwise.

Page | 87

2 file.mode

Returns access mode with which file was opened.

3 file.name

Returns name of the file.

4 file.softspace

Returns false if space explicitly required with print, true
otherwise.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode
print "Softspace flag : ", fo.softspace

Name of the file: foo.txt
Closed or not : False
Opening mode : wb
Softspace flag : 0

Page | 88

The close() Method

The close() method of a file object flushes any unwritten information
and closes the file object, after which no more writing can be done.

Python automatically closes a file when the reference object of a file is
reassigned to another file. It is a good practice to use the close() method
to close a file.

Syntax
fileObject.close()
Example

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name

Close opend file
fo.close()

This produces the following result −

Name of the file: foo.txt

Reading and Writing Files

The file object provides a set of access methods to make our lives
easier. We would see how to use read() and write() methods to read
and write files.

Page | 89

The write() Method

The write() method writes any string to an open file. It is important to
note that Python strings can have binary data and not just text.

The write() method does not add a newline character ('\n') to the end of
the string −

Syntax
fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
fo.write("Python is a great language.\nYeah its great!!\n")

Close opend file
fo.close()

The above method would create foo.txt file and would write given
content in that file and finally it would close that file. If you would
open this file, it would have following content.

Python is a great language.
Yeah its great!!

The read() Method

The read() method reads a string from an open file. It is important to
note that Python strings can have binary data. apart from text data.

Page | 90

Syntax
fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the
opened file. This method starts reading from the beginning of the file
and if count is missing, then it tries to read as much as possible, maybe
until the end of file.

Example

Let's take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str
Close opend file
fo.close()

This produces the following result −

Read String is : Python is

File Positions

The tell() method tells you the current position within the file; in other
words, the next read or write will occur at that many bytes from the
beginning of the file.

The seek(offset[, from]) method changes the current file position.
The offset argument indicates the number of bytes to be moved.
The from argument specifies the reference position from where the
bytes are to be moved.

Page | 91

If from is set to 0, it means use the beginning of the file as the reference
position and 1 means use the current position as the reference position
and if it is set to 2 then the end of the file would be taken as the
reference position.

Example

Let us take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "r+")
str = fo.read(10)
print "Read String is : ", str

Check current position
position = fo.tell()
print "Current file position : ", position

Reposition pointer at the beginning once again
position = fo.seek(0, 0);
str = fo.read(10)
print "Again read String is : ", str
Close opend file
fo.close()

This produces the following result −

Read String is : Python is
Current file position : 10
Again read String is : Python is

Page | 92

Renaming and Deleting Files

Python os module provides methods that help you perform file-
processing operations, such as renaming and deleting files.

To use this module you need to import it first and then you can call any
related functions.

The rename() Method

The rename() method takes two arguments, the current filename and
the new filename.

Syntax
os.rename(current_file_name, new_file_name)
Example

Following is the example to rename an existing file test1.txt −

#!/usr/bin/python
import os

Rename a file from test1.txt to test2.txt
os.rename("test1.txt", "test2.txt")

The remove() Method

You can use the remove() method to delete files by supplying the name
of the file to be deleted as the argument.

Syntax
os.remove(file_name)

Example

Following is the example to delete an existing file test2.txt –

Page | 93

#!/usr/bin/python
import os

Delete file test2.txt
os.remove("text2.txt")

Directories in Python

All files are contained within various directories, and Python has no
problem handling these too. The os module has several methods that
help you create, remove, and change directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories
in the current directory. You need to supply an argument to this method
which contains the name of the directory to be created.

Syntax
os.mkdir("newdir")
Example

Following is the example to create a directory test in the current
directory −

#!/usr/bin/python
import os

Create a directory "test"
os.mkdir("test")

Page | 94

The chdir() Method

You can use the chdir() method to change the current directory. The
chdir() method takes an argument, which is the name of the directory
that you want to make the current directory.

Syntax
os.chdir("newdir")
Example

Following is the example to go into "/home/newdir" directory −

#!/usr/bin/python
import os

Changing a directory to "/home/newdir"
os.chdir("/home/newdir")

The getcwd() Method

The getcwd() method displays the current working directory.

Syntax
os.getcwd()
Example

Following is the example to give current directory −

#!/usr/bin/python
import os

This would give location of the current directory
os.getcwd()

Page | 95

The rmdir() Method

The rmdir() method deletes the directory, which is passed as an
argument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax
os.rmdir('dirname')
Example

Following is the example to remove "/tmp/test" directory. It is required
to give fully qualified name of the directory, otherwise it would search
for that directory in the current directory.

#!/usr/bin/python
import os

This would remove "/tmp/test" directory.
os.rmdir("/tmp/test")

